

# AURIGA<sup>TM</sup>

## BEST-IN-CLASS STAR TRACKER



SPECIFICALLY DESIGNED FOR SMALL SATELLITE MISSIONS,

COST EFFECTIVE, HIGH PRODUCTION RATE, REDUCED WEIGHT AND VOLUME

10 YEARS LIFETIME IN LEO ORBIT (400-1200 KM) AND 15 YEARS IN GEO ORBIT

FLIGHT PROVEN SINCE 2019, OVER 1500 UNITS LAUNCHED

30+ MILLION HOURS OF OPERATIONS WITH 100% MISSION SUCCESS

### AURIGATM LINE UP

• Excellent robustness especially at end of life and for high detector temperature conditions in both acquisition and tracking modes • Embedded Star Catalog and Algorithms developped over 50 years of experience including Hydra star tracker • 10 years lifetime in LEO orbit (400 - 1200km) and 15 years in GEO orbit • EU Dual Use 7A104 – ITAR Free

### OPTICAL HEAD (OH) / BAFFLE



| Size              | 66 x 59 x 94 mm |  |  |
|-------------------|-----------------|--|--|
| Mass              | 225 g           |  |  |
| Power consumption | 0.8 W           |  |  |

- Smart design & simple architecture
- Configurations up to 3 OH
- Fast acquisition and few arcsec accuracy with CMOS detector
- Baffle protection from Sun and Earth illumination
- Sun exclusion angle 35° (standard)

#### SOFTWARE



- Software can run in EU or can be implemented in satellite OBC. In case of software embedded on OBC, S/W library is available for different processors on demand.
- Multi-head merged attitude at up to 10 Hz
- Possible software options: Auriga-gyro & others available on demand to increase performance

#### **ELECTRONIC UNIT • OPTIONAL - CENTRALIZED PROCESSING VERSION AVAILABLE**<sup>1</sup>



| Size              | 91 x 117 x 25 mm        |
|-------------------|-------------------------|
| Mass              | 315 g                   |
| Power consumption | 2.1 W +<br>0.8 W per OH |

- Drives up to 3 OH through SpW I/F
- Communication I/F RS422 UART
- 5V power supply
- Other EU compatible with CAN interface available contact us for more information.

#### MAIN CHARACTERISTICS

| Low Frequency spatial<br>(FOV) error XY / Z @ 3σ    | 9 / 51 arcsec                       |  |
|-----------------------------------------------------|-------------------------------------|--|
| High Frequency spatial<br>(Pixel) error XY / Z @ 3σ | 6.6 / 38 arcsec                     |  |
| Slew rate in Acquisition                            | 0.3 deg/s in baseline Up to 2 deg/s |  |
| Slew rate in Tracking                               | Up to 3 deg/s                       |  |

# AURIGATM ADD-ON

#### HARDWARE OPTION · 26° BAFFLE







Sodern is introducing a new baffle for Auriga™ offering a Sun Exclusion Angle of 26° to facilitate accommodation on satellite.

- · Qualified end of 2024
- FM available in 2025

#### SOFTWARE OPTION · AURIGA-GYRO

For better pointing performance and high robustness to rate and acceleration in acquisition and tracking, the Auriga $^{\text{TM}}$ -GYRO library receives information from the satellite gyrometer and provides:

- Enhanced STR robustness through "tight coupling" with gyrometer
- A gyrometer STR hybridised attitude, with dramatically reduced noise and 100% available, through Extended Kalman Filter

Recommended gyrometer minimum performances for Auriga-gyro:

| Angle random walk (ARW) | < 0,15 deg/√h  |  |
|-------------------------|----------------|--|
| Rate random walk (RRW)  | < 1 deg /h /√h |  |

STR OH (Sodern) Stars Rate Rate **STR GSTR** Aided attitude (tight (Kalman propagation coupling) coupling)  $Q_{\text{STR}}$ STR TM **GSTR TM** STR Attitude with STR-Gyro merged attitude, enhanced robustness quality index, angular rate...

Auriga performances with gyro software option:

| Slew rate in acquisition | up to 4 deg/s                            |  |  |
|--------------------------|------------------------------------------|--|--|
| Slew rate in tracking    | Up to 10 deg/s and 10 deg/s <sup>2</sup> |  |  |

# AURIGATM MAIN CHARACTERISTICS







| Centralised processing configuration                                                                                                                                                                          | With Electronic Unit                                                                                                                                                                                                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Optical head connected to the spacecraft's OBC through SpaceWire interface with power supplying</li> <li>Software operating frequency up to 10 Hz according to host processor performance</li> </ul> | Embedded software in electronic unit processing OH's data and computing the attitude • Electronic unit can perform OH FDIR through autonomous individual OH switch ON/OFF • Electronic unit operating refresh rate of 10 Hz |

### END OF LIFE WORST CASE CONDITIONS DATA

### **ENVIRONMENTAL CHARACTERISTICS**

|                                          | Optical head (OH)                               | Electronic Unit (EU)                            |  |
|------------------------------------------|-------------------------------------------------|-------------------------------------------------|--|
| Operating temperature range (°C)         | - 20 / + 40                                     |                                                 |  |
| Storage temperature (°C)                 | - 30 / + 70                                     |                                                 |  |
| Mechanical environment (in/out of plane) | Vibration: 33 gRMS<br>Shocks: 2000gSRS @2000 Hz | Vibration: 22 gRMS<br>Shocks: 2000gSRS @2000 Hz |  |
| Size (mm)                                | 66 x 59 x 94 (height, including baffle)         | 91 x 117 x 25 (height)                          |  |
| Mass (g)                                 | 225 (including baffle)                          | 315                                             |  |

### EEE LEVELS, RELIABILITY AND LIFETIME

|                  | Optical head (OH)                                        | Electronic Unit (EU) |  |
|------------------|----------------------------------------------------------|----------------------|--|
| EEE parts class  | ECSS Class 3 equivalent                                  |                      |  |
| Reliability      | 230 FIT (FIDES method @20°C) 470 FIT (FIDES method @20°C |                      |  |
| Lifetime (years) | 10 in LEO 400-1200km / 15 in GEO with EOR                |                      |  |

# AURIGATM MAIN CHARACTERISTICS

### **ELECTRICAL INTERFACES**

|                                        | Optical head (OH)                         | Electronic Unit (EU)                           |  |
|----------------------------------------|-------------------------------------------|------------------------------------------------|--|
| Power supply (V)                       | 5V (±10%)                                 | 4.75 to 5.5V                                   |  |
| Power consumption (W)<br>(typical/max) | 0.8 / 1.0                                 | 2.1 / 3.4                                      |  |
| Output data                            | SpaceWire<br>(50 Mbps signaling rate)     | RS422 UART (115200 baud)<br>CAN (open request) |  |
| Output rate (Hz)                       | 8 or 10 (5 Hz possible to relax CPU load) | 8 or 10                                        |  |

### PERFORMANCES AND ROBUSTNESS

|                                                     | Optical head (OH)                   | Electronic Unit (EU) | Auriga™ with Auriga-<br>Gyro software       |
|-----------------------------------------------------|-------------------------------------|----------------------|---------------------------------------------|
| Bias (worst case)                                   | 0.017 deg                           |                      |                                             |
| Thermo-elastic Error (worst case)                   | <1.5 arcsec/°C                      |                      |                                             |
| Low Frequency spatial<br>(FOV) error XY / Z @ 3σ    | 9 / 51 arcsec                       |                      |                                             |
| High Frequency spatial<br>(Pixel) error XY / Z @ 3σ | 6.6 / 38 arcsec                     |                      |                                             |
| Temporal noise<br>on XY / Z @ 3σ                    | 11 / 70 arcsec                      |                      |                                             |
| Time from lost-in-space (typical)                   | 3.8s                                |                      |                                             |
| Slew rate in Acquisition                            | 0.3 deg/s in baseline Up to 2 deg/s |                      | up to 4 deg/s                               |
| Slew rate in Tracking                               |                                     |                      | Up to 10 deg/s<br>and 10 deg/s <sup>2</sup> |
| Acceleration in Acquisition                         | Up to 1 deg/s <sup>2</sup>          |                      |                                             |
| Acceleration in Tracking at 10Hz                    | Up to 2.5 deg/s²                    |                      |                                             |
| Full Moon in the Field of View                      | No performance degradation          |                      |                                             |
| Baffle Sun Exclusion Angle                          | 35 deg (26° available)              |                      |                                             |
| Baffle Earth Exclusion Angle                        | 22 deg                              |                      |                                             |
| Solar flare Acqu/Tracking                           | Robust                              |                      |                                             |

### AURIGATM OPTIONS

# A FULL SET OF OPTIONS TO SUPPORT YOUR DESIGN, VERIFICATION AND OPERATIONAL NEEDS

#### **GROUND SUPPORT EQUIPMENT**

# Sodern proposes a full set of Ground Support Equipment to support the integration and validation of Auriga™:

- Auriga engineering model (optical head and electronic unit)
- Star tracker numerical performance model
- Auriga $^{\rm TM}$  A-DEOS: dynamic optical stimulator for AOCS/STR system Functional Tests. HW in the Loop
- Auriga™ STOS: static optical stimulator
- EGSE for stand alone testing of star tracker
- · Additional ground support on-demand

#### TECHNICAL SUPPORT

# Any questions about Star Trackers use or performance? Our experts are here to help! We offer several technical support options:

- Standard remote support packages (customers preferred choice thanks to fast response time)
- Training with our experts to become knowledgeable in our star tracker and GSEs, at Sodern site or at customer site
- Mission-specific Radiation and Performance assessments
- · Additional technical support on-demand

#### CONTACT US AT: SALES-DEPARTMENT@SODERN.FR



# STATE OF THE ART PRODUCTION FACILITIES



- Clean rooms from ISO level 5 to 7 including workstations and test benches
- Sodern is certified EN9100 and ISO 9001

#### PRODUCTION CAPACITY

- 200 auriga off-the-shelf at all time
- Up to 150 units / month manufacturing capacity
- Collocated engineering, production and testing

### <u>FLIGHT HERITAGE</u>



- Over 1,500 Auriga™ are in orbit with 100% mission success rate
- Flight proven algorithm: more than 30+ million hours of successfull operation
- Worldwide customer base

2019 cnes hemeria

### ANGELS: HEMERIA

Angels: Hemeria is equipped with Auriga $^{\text{TM}}$ 

2019 @ eutelsat ONEWEB

#### **ONEWEB CONSTELLATION**

Sodern equipped all satellites with 1,200 Auriga™

2023  $\square^{\text{nano}}$ 

#### **NANOAVIONICS**

Auriga™ is on board several platforms

2022 - 2024

+300 Auriga™ launched in 2 years

### **SELECTION CHART**

WHAT AURIGA™ CONFIGURATION IS BEST FOR YOU?



We are availale to discuss your business needs and mission requirements, provide pricing and technical proposal:

CONTACT US: SALES-DEPARTMENT@SODERN.FR

20 avenue Descartes 94451 Limeil-Brévannes Cedex France



